New insights into force depression in skeletal muscle.
نویسندگان
چکیده
Force depression observed following active shortening is not well understood. Previous research suggested that force depression might be associated with a stress-induced inhibition of cross-bridges in the newly formed overlap zone following shortening. Our aim was to investigate this theory in skinned fibres and determine whether there was an inhibition of the attachment of cross-bridges or a decrease in the force produced per cross-bridge. The stress-induced inhibition of cross-bridge theory gives testable predictions, including: (1) skinned fibres should show proportional force and stiffness depression, (2) force after shortening should not be lower than force before shortening, (3) stiffness following shortening should not be lower than stiffness before shortening and (4) force depression should decrease when the stress during shortening is decreased. In agreement with these predictions, force and stiffness depression were approximately proportional, and force depression decreased with decreasing stress during shortening. However, in contrast to the predictions of the stress-induced inhibition of cross-bridge theory, force after shortening from sarcomere lengths of 2.8 and 3.0 μm to a sarcomere length of 2.4 μm was smaller than force before shortening, and this was not accompanied by a corresponding decrease in stiffness. We conclude that the stress-induced inhibition of cross-bridge theory, as proposed previously, cannot be the only mechanism for force depression, but that there is an additional, stress-induced inhibition of cross-bridges in the old overlap zone. Furthermore, both mechanisms, inhibition of cross-bridge attachment and reduction of force produced per cross-bridge, contribute to force depression. Inhibition and/or reduction of force depend(s) on the amount of stress imposed on actin during the shortening phase.
منابع مشابه
When hearts fail so does skeletal muscle: breaking a vicious cycle.
In heart failure, keeping up with the oxygen demands of working skeletal muscles becomes compromised during exercise. As if this situation is not bad enough, as with many aspects of the heart failure syndrome, there are more vicious mechanisms at work. It has been known for some time that skeletal muscle function is also depressed in patients and animals in heart failure. The depression has bee...
متن کاملConsiderations on the history dependence of muscle contraction.
When a skeletal muscle that is actively producing force is shortened or stretched, the resulting steady-state isometric force after the dynamic phase is smaller or greater, respectively, than the purely isometric force obtained at the corresponding final length. The cross-bridge model of muscle contraction does not readily explain this history dependence of force production. The most accepted p...
متن کاملForce recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression.
The depression of isometric force after active shortening is a well-accepted characteristic of skeletal muscle, yet its mechanisms remain unknown. Although traditionally analyzed at steady state, transient phenomena caused, at least in part, by cross-bridge kinetics may provide novel insight into the mechanisms associated with force depression (FD). To identify the transient aspects of FD and i...
متن کاملA new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers
Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...
متن کاملResidual force depression in single sarcomeres is abolished by MgADP-induced activation
The mechanisms behind the shortening-induced force depression commonly observed in skeletal muscles remain unclear, but have been associated with sarcomere length non-uniformity and/or crossbridge inhibition. The purpose of this study was twofold: (i) to evaluate if force depression is present in isolated single sarcomeres, a preparation that eliminates sarcomere length non-uniformities and (ii...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 215 Pt 12 شماره
صفحات -
تاریخ انتشار 2012